Hermitian Compact Interpolation on the Cubed-Sphere Grid
نویسنده
چکیده
The cubed-sphere grid is a spherical grid made of six quasi-cartesian square-like patches. It was originally introduced in [21]. We extend to this grid the design of high-order nite-di erence compact operators [4, 11]. The present work is limitated to the design of a fourth-order accurate spherical gradient. The treatment at the interface of the six patches relies on a speci c interpolation system which is based on using great circles in an essential way. The main interest of the approach is a fully symmetric treatment of the sphere. We numerically demonstrate the accuracy of the approximate gradient on several test problems, including the cosine-bell test-case of Williamson et al. [27] and a deformational test-case reported in [13].
منابع مشابه
Hermitian approximation of the spherical divergence on the Cubed-Sphere
Previous work [7] showed that the Cubed-Sphere grid offers a suitable discrete framework for extending Hermitian compact operators [6] to the spherical setup. In this paper we further investigate the design of high-order accurate approximations of spherical differential operators on the Cubed-Sphere with an emphasis on the spherical divergence of a tangent vector field. The basic principle of t...
متن کاملMulti-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids
A scalable parallel and block-adaptive cubed-sphere grid simulation framework is described for solution of hyperbolic conservation laws in domains between two concentric spheres. In particular, the Euler and ideal magnetohydrodynamics (MHD) equations are considered. Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach involves the use of a fully multi-dimensiona...
متن کاملHigh-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes
This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubedsphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on ...
متن کاملHigh-order finite volume shallow water model on the cubed-sphere: 1D reconstruction scheme
A central-upwind finite-volume (CUFV) scheme for shallow-water model on a nonorthogonal equiangular cubed-sphere grid is developed, consequently extending the 1D reconstruction CUFV transport scheme developed by us. High-order spatial discretization based on weighted essentially non-oscillatory (WENO) is considered for this effort. The CUFV method combines the alluring features of classical upw...
متن کاملFinite-volume transport on various cubed-sphere grids
The performance of a multidimensional finite-volume transport scheme is evaluated on the cubed-sphere geometry. Advection tests with prescribed winds are used to evaluate a variety of cubed-sphere projections and grid modifications including the gnomonic and conformal mappings, as well as two numerically generated grids by an elliptic solver and spring dynamics. We explore the impact of grid no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 57 شماره
صفحات -
تاریخ انتشار 2013